MTH 605 - Midterm Solutions

1. A space X is said to be contractible if the identity map $i d_{X}$ on X is nulhomotopic.
(a) Show that a space X is contractible if and only if it is homotopically equivalent to a one-point space.
(b) Show that a retract of a contractible space is contractible.

Solution. (a) Consider an $x_{0} \in X$ such that $i d_{X} \simeq c_{x_{0}}($ via $F)$. We claim that the constant map $c_{x_{0}}$ is a homotopy equivalence between X and $\left\{x_{0}\right\}$. Clearly, $c_{x_{0}} \circ i_{x_{0}}=i d_{\left\{x_{0}\right\}}$, where $i_{x_{0}}:\left\{x_{0}\right\} \rightarrow X$ is the inclusion. Furthermore, since $i_{x_{0}} \circ c_{x_{0}} \simeq c_{x_{0}}$, it follows from our hypothesis that $i d_{X} \simeq i_{x_{0}} \circ c_{x_{0}}($ via $F)$.
Conversely, suppose that X is homotopically equivalent to $\left\{x_{0}\right\}$. Then by assumption $c_{x_{0}}=i_{x_{0}} \circ c_{x_{0}} \simeq i d_{X}$, from which it follows that X is contractible.
(b) Let $x_{0} \in A \subset A$, and let $r: X \rightarrow A$ be a retraction. Then we claim that $\left.c_{x_{0}}\right|_{A}$ is a homotopy equivalence. As before, $\left.c_{x_{0}}\right|_{A} \circ i_{x_{0}}=i d_{\left\{x_{0}\right\}}$, where $i_{x_{0}}:\left\{x_{0}\right\} \rightarrow A$ is the inclusion. So it suffices to show that $i d_{A} \simeq$ $\left.i_{x_{0}} \circ c_{x_{0}}\right|_{A}$. However, it is easily seen that $\left.i d_{A} \simeq i_{x_{0}} \circ c_{x_{0}}\right|_{A}($ via $r \circ F)$.
2. Let $f: S^{1} \rightarrow S^{1}$ be a continuous map, and let $f_{*}: \pi_{1}\left(S^{1}, 1\right) \rightarrow$ $\pi_{1}\left(S^{1}, f(1)\right)$ be the homomorphism induced by f. Then the degree of $f($ denoted $\operatorname{by} \operatorname{deg}(f))$ is an integer d such that $f_{*}([\alpha])=d\left(\hat{\beta}_{f(1)}([\alpha])\right)$, where $[\alpha]$ is a generator of $\pi_{1}\left(S^{1}, 1\right)$ and β_{x} is the path in S^{1} obtained by traversing along S^{1} in the counterclockwise direction from a point $x \in S^{1}$ to 1 .
(a) Compute $\operatorname{deg}(f)$ for the following maps.
(i) $f=c_{1}$.
(ii) $f(z)=\bar{z}$.
(iii) $f(z)=z^{n}$.
(b) Show that $\operatorname{deg}(f \circ g)=\operatorname{deg}(f) \operatorname{deg}(g)$.
(c) Let $f, g: S^{1} \rightarrow S^{1}$ be continuous maps. Then show that $f \simeq g$ if and only if $\operatorname{deg}(f)=\operatorname{deg}(g)$.

Solution. First, we note that $\operatorname{deg}(f)$ is independent of the choice of path (Verify this!). For simplicity, given $[\alpha] \in \pi_{1}\left(S^{1}, 1\right)$ and $f: S^{1} \rightarrow$ S^{1}, we define

$$
\left[\alpha_{f}\right]:=\hat{\beta}_{f(1)}([\alpha])=\left[\bar{\beta}_{f(1)} * \alpha * \beta_{f(1)}\right] .
$$

(a) (i) When $f=c_{1}$, it follows that:

$$
f_{*}([\alpha])=\left[\left(c_{1} \circ \alpha_{f}\right)\right]=\left[\left(c_{1}\right)_{f}\right],
$$

which shows that $\operatorname{deg}(f)=0$.
(ii) When $f(z)=\bar{z}$, we have:

$$
f_{*}([\alpha])=\left[\left(f \circ \alpha_{f}\right)\right]=\left[\bar{\alpha}_{f}\right]=-\left[\alpha_{f}\right],
$$

where the bar over the α_{f} signifies complex conjugation. Thus, it follows that $\operatorname{deg}(f)=-1$.
(iii) When $f(z)=z^{n}$, we have:

$$
f_{*}([\alpha])=[(f \circ \alpha)]=\left[\left(\alpha_{f}\right)^{n}\right]=n\left[\alpha_{f}\right],
$$

from which we can infer that $\operatorname{deg}(f)=n$.
(b) Let $\operatorname{deg}(f)=d_{1}$ and $\operatorname{deg}(g)=d_{2}$. Then given $[\alpha] \in \pi_{1}\left(S^{1}, 1\right)$, we have:

$$
(f \circ g)_{*}([\alpha])=f_{*}\left(g_{*}([\alpha])\right)=f_{*}\left(d_{2}\left[\alpha_{g}\right]\right)=d_{2} f_{*}\left(\left[\alpha_{g}\right]=d_{2} d_{1}\left[\alpha_{f \circ g}\right],\right.
$$

from which the assertion follows.
(c) If $f \simeq g$, then $f_{*}=g_{*}$, from which it immediately follows that $\operatorname{deg}(f)=\operatorname{deg}(g)$. Conversely, suppose that $\operatorname{deg}(f)=\operatorname{deg}(g)$. We note that any continuous map $h: S^{1} \rightarrow S^{1}$ can be viewed a loop in S^{1} based at 1. (Too see this, verify the following fact: $\pi_{1}\left(S^{1}, 1\right)$ is in bijective correspondence with the homotopy classes of continuous maps $\left.S^{1} \rightarrow S^{1}\right)$. Moreover, for any homotopy class $[\beta] \in \pi_{1}\left(S_{1}, 1\right)$, there exists a unique $d \in \mathbb{Z}$ such that $[\beta]=d[\alpha]$. Hence, as $\operatorname{deg}(f)=\operatorname{deg}(g)$, as loops they represent the same homotopy class $\pi_{1}\left(S_{1}, 1\right)$, from which it follows that $f \simeq g$.
3. Consider the torus T imbedded \mathbb{R}^{3} whose points satisfy the quartic equation

$$
\left(x^{2}+y^{2}+z^{2}+r^{2}-1\right)^{2}=4 r^{2}\left(x^{2}+y^{2}\right),
$$

where $r>1$. Consider the antipodal identification on the torus T defined by $(x, y, z) \sim(-x,-y,-z)$ for each $(x, y, z) \in T$. Let $q: T \rightarrow$ K be induced quotient map and let K be the quotient space T / \sim.
(a) Show that $q: T \rightarrow K$ is a covering space.
(b) Show that there exists an index-two subgroup of the $\pi_{1}(K)$ that is isomorphic to $\mathbb{Z} \times \mathbb{Z}$.

Solution. (a) First, we note that under the given embedding of T, the intersection of T with the $\left\{(x, y, z) \in \mathbb{R}^{3}: z=0\right\}$ ($x y$-plane) in the disjoint union of the circles $S^{1}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=1, z=0\right\}$ and $S_{r}^{1}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=r^{2}, z=0\right\}$. Moreover, T does not intersect the z-axis and any rotation of \mathbb{R}^{3} about the z-axis leaves T invariant.

Under the antipodal identification \sim on T each point point in $T \cap$ $\left\{(x, y, z) \in \mathbb{R}^{3}: z>0\right\}$ is identified with a unique antipodal point in $T \cap\left\{(x, y, z) \in \mathbb{R}^{3}: z<0\right\}$. Furthermore, each point on the circle S^{1} (resp. S_{r}^{1}) is identified with a unique antipodal point on the S^{1} (resp. S_{r}^{1}). Thus, the quotient space $K=T / \sim$ can also be described as being obtained by the antipodal identification on the two boundary components $S^{1} \sqcup S_{r}^{1}$ of the hemitorus $T^{\prime}=T \cap\left\{(x, y, z) \in \mathbb{R}^{3}: z \geq 0\right\}$. (Show that $K \approx \mathbb{R} P^{2} \# \mathbb{R} P^{2}$, the Klein bottle.)
Consider the quotient map $q: T \rightarrow K=T / \sim$ induced by the antipodal identification described above. Then any point $x \in K$ lifts to an antipodal pair $\{\tilde{x},-\tilde{x}\}$ of points in T. Let $B(z, r)$ denote the open ball in \mathbb{R}^{3} centered at z and radius r and let $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the antipodal map. Choose $t<(r-1) / 4$ and consider the open sets $U=B(\tilde{x}, t) \cap T$ and $A(U)=B(-\tilde{x}, t) \cap T$ in T. Then, clearly $U \cap A(U)=\emptyset$ and both U and $A(U)$ are mapped homeomorphically by q to an open set V in K containing x. Therefore, V is an evenly covered neighborhood of x, and the assertion follows.
(b) Following the notation in 3(a) above, let $H=q_{*}\left(\pi_{1}(T, \tilde{x})\right)$. Since $q: T \rightarrow K$ is a covering space, it follows from Lesson Plan 4.4 (iii)(b) that $\pi_{1}(K, x) / H \rightarrow\{\tilde{x},-\tilde{x}\}$ is a bijection. Moreover, as q_{*} is injective, it follows that $H \cong \pi_{1}(T,(1,1)) \cong \mathbb{Z} \times \mathbb{Z}$. Thus, H is the required index-two subgroup of the $\pi_{1}(K, x)$ that is isomorphic to $\mathbb{Z} \times \mathbb{Z}$.
4. Let X be the quotient space obtained by identifying the circle $x^{2}+y^{2}=$ $1, z=0$ in the torus T (as in Problem 3 above) with the equator of the unit sphere S^{2} centered at the origin $(0,0,0)$. Use the Seifert-Van Kampen theorem to compute the fundamental group of X.
Solution. Let $A_{1}=B(0, r-1 / 2) \cap X$ and $A_{2}=T \cup(\{(x, y, z) \in$ $\left.\left.\mathbb{R}^{3}: z \in(-1 / 2,1 / 2)\right\} \cap S^{2}\right)$. Following the notation in Problem 4, we have $X=A_{1} \cup A_{2}$, where $A_{1} \simeq S^{2}, A_{2} \simeq T$, and $A_{1} \cap A_{2} \simeq S^{1}$. Let $x=(1,0,0)$ and $i_{*}: \pi_{1}\left(A_{1} \cap A_{2}, x\right) \rightarrow \pi_{1}(X, x)$ and $j_{*}: \pi_{1}\left(A_{1} \cap\right.$ $\left.A_{2}, x\right) \rightarrow \pi_{1}(X, x)$ induced by the inclusions $i:\left(A_{1} \cap A_{2}, x\right) \rightarrow(X, x)$ and $j:\left(A_{1} \cap A_{2}, x\right) \rightarrow(X, x)$, respectively. Let β be the generator of $\pi_{1}\left(A_{1}, x\right) \cong \pi_{1}\left(S^{1}, x\right)$ represented by loop based at x in S^{1} (the equator
of S^{2}) that traverses once around S^{1} in the counterclockwise direction, β^{\prime} be the generator of $\pi_{1}\left(A_{2}, x\right) \cong \pi_{1}(T, x)$ represented by a loop based at x in T that traverses once around the logitudinal curve of T (along which T is identified with S^{2} by construction), and let α^{\prime} be the other generator of $\pi_{1}(T, x)$ represented by the loop based at x in T that traverses once around the meridional curve of T (perpendicular to the longitudinal curve at x) in the counterclockwise direction.
By construction, it is apparent that i_{*} is trivial, since S^{2} is simplyconnected, and $j_{*}(\beta)=\beta^{\prime}$. By the Seifert-Van Kampen theorem, we get

$$
\pi_{1}(X, x)=\pi_{1}\left(A_{1}, x\right) * \pi_{1}\left(A_{2}, x\right) / N
$$

where N is normally generated by $\left\{i_{*}(\alpha) j_{*}(\alpha)^{-1}: \alpha \in \pi_{1}\left(A_{1} \cap A_{2}, x\right) \cong\right.$ $\left.\pi_{1}\left(S^{1}, x\right)\right\}$. Hence, it follows that

$$
\pi_{1}(X, x) \cong\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle /\left\langle\left(\beta^{\prime}\right)^{-1}=\left(j_{*}(\beta)\right)^{-1}\right\rangle \cong\left\langle\alpha^{\prime}\right\rangle \cong \mathbb{Z}
$$

5. (Bonus). Show that for $n \geq 2, S_{n}$ is not contractible.

Solution. For $x_{0} \in S^{n}$, suppose that $c_{x} \simeq i d_{x_{0}}($ via $F)$. Then the map $r: D^{n+1} \rightarrow S^{n}$ defined by

$$
r(x)= \begin{cases}x_{0}, & \text { if }\|x\| \leq 1 / 2, \text { and } \\ F\left(\frac{x}{\|x\|}, 2\|x\|-1\right), & \text { if }\|x\| \geq 1 / 2,\end{cases}
$$

defines a retraction of $D^{n+1} \rightarrow S^{n}$ (Verify this!), which is a contradiction. (Note that this proof assumes the following nontrivial fact: There exists no retraction from $D^{n+1} \rightarrow S^{n}$. The proof for $n=1$ was discussed in class as part of Lesson Plan 2.5 (iv).)

