
MTH 605 - Midterm Solutions
1. A space X is said to be contractible if the identity map idX on X is

nulhomotopic.

(a) Show that a space X is contractible if and only if it is homotopi-
cally equivalent to a one-point space.

(b) Show that a retract of a contractible space is contractible.

Solution. (a) Consider an x0 ∈ X such that idX ' cx0(viaF ). We
claim that the constant map cx0 is a homotopy equivalence between
X and {x0}. Clearly, cx0 ◦ ix0 = id{x0}, where ix0 : {x0} → X is
the inclusion. Furthermore, since ix0 ◦ cx0 ' cx0 , it follows from our
hypothesis that idX ' ix0 ◦ cx0(viaF ).

Conversely, suppose that X is homotopically equivalent to {x0}. Then
by assumption cx0 = ix0 ◦ cx0 ' idX , from which it follows that X is
contractible.

(b) Let x0 ∈ A ⊂ A, and let r : X → A be a retraction. Then we claim
that cx0 |A is a homotopy equivalence. As before, cx0|A ◦ ix0 = id{x0},
where ix0 : {x0} → A is the inclusion. So it suffices to show that idA '
ix0 ◦ cx0|A. However, it is easily seen that idA ' ix0 ◦ cx0 |A(via r ◦ F ).

2. Let f : S1 → S1 be a continuous map, and let f∗ : π1(S
1, 1) →

π1(S
1, f(1)) be the homomorphism induced by f . Then the degree of

f (denoted by deg(f)) is an integer d such that f∗([α]) = d(β̂f(1)([α])),
where [α] is a generator of π1(S

1, 1) and βx is the path in S1 obtained
by traversing along S1 in the counterclockwise direction from a point
x ∈ S1 to 1.

(a) Compute deg(f) for the following maps.

(i) f = c1.

(ii) f(z) = z̄.

(iii) f(z) = zn.

(b) Show that deg(f ◦ g) = deg(f)deg(g).

(c) Let f, g : S1 → S1 be continuous maps. Then show that f ' g if
and only if deg(f) = deg(g).

Solution. First, we note that deg(f) is independent of the choice of
path (Verify this!). For simplicity, given [α] ∈ π1(S1, 1) and f : S1 →
S1, we define

[αf ] := β̂f(1)([α]) = [β̄f(1) ∗ α ∗ βf(1)].
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(a) (i) When f = c1, it follows that:

f∗([α]) = [(c1 ◦ αf )] = [(c1)f ],

which shows that deg(f) = 0.

(ii) When f(z) = z̄, we have:

f∗([α]) = [(f ◦ αf )] = [ᾱf ] = −[αf ],

where the bar over the αf signifies complex conjugation. Thus, it fol-
lows that deg(f) = −1.

(iii) When f(z) = zn, we have:

f∗([α]) = [(f ◦ α)] = [(αf )n] = n[αf ],

from which we can infer that deg(f) = n.

(b) Let deg(f) = d1 and deg(g) = d2. Then given [α] ∈ π1(S1, 1), we
have:

(f ◦ g)∗([α]) = f∗(g∗([α])) = f∗(d2[αg]) = d2f∗([αg] = d2d1[αf◦g],

from which the assertion follows.

(c) If f ' g, then f∗ = g∗, from which it immediately follows that
deg(f) = deg(g). Conversely, suppose that deg(f) = deg(g). We
note that any continuous map h : S1 → S1 can be viewed a loop in
S1 based at 1. (Too see this, verify the following fact: π1(S

1, 1) is in
bijective correspondence with the homotopy classes of continuous maps
S1 → S1). Moreover, for any homotopy class [β] ∈ π1(S1, 1), there
exists a unique d ∈ Z such that [β] = d[α]. Hence, as deg(f) = deg(g),
as loops they represent the same homotopy class π1(S1, 1), from which
it follows that f ' g.

3. Consider the torus T imbedded R3 whose points satisfy the quartic
equation (

x2 + y2 + z2 + r2 − 1
)2

= 4r2
(
x2 + y2

)
,

where r > 1. Consider the antipodal identification on the torus T
defined by (x, y, z) ∼ (−x,−y,−z) for each (x, y, z) ∈ T . Let q : T →
K be induced quotient map and let K be the quotient space T/ ∼.

(a) Show that q : T → K is a covering space.

(b) Show that there exists an index-two subgroup of the π1(K) that
is isomorphic to Z× Z.
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Solution. (a) First, we note that under the given embedding of T , the
intersection of T with the {(x, y, z) ∈ R3 : z = 0} (xy-plane) in the
disjoint union of the circles S1 = {(x, y, z) ∈ R3 : x2 + y2 = 1, z = 0}
and S1

r = {(x, y, z) ∈ R3 : x2 + y2 = r2, z = 0}. Moreover, T does not
intersect the z-axis and any rotation of R3 about the z-axis leaves T
invariant.

Under the antipodal identification ∼ on T each point point in T ∩
{(x, y, z) ∈ R3 : z > 0} is identified with a unique antipodal point in
T ∩ {(x, y, z) ∈ R3 : z < 0}. Furthermore, each point on the circle
S1 (resp. S1

r ) is identified with a unique antipodal point on the S1

(resp. S1
r ). Thus, the quotient space K = T/ ∼ can also be described

as being obtained by the antipodal identification on the two boundary
components S1 tS1

r of the hemitorus T ′ = T ∩{(x, y, z) ∈ R3 : z ≥ 0}.
(Show that K ≈ RP 2#RP 2, the Klein bottle.)

Consider the quotient map q : T → K = T/ ∼ induced by the antipo-
dal identification described above. Then any point x ∈ K lifts to an
antipodal pair {x̃,−x̃} of points in T . Let B(z, r) denote the open ball
in R3 centered at z and radius r and let A : R3 → R3 be the antipodal
map. Choose t < (r− 1)/4 and consider the open sets U = B(x̃, t)∩ T
and A(U) = B(−x̃, t) ∩ T in T . Then, clearly U ∩ A(U) = ∅ and both
U and A(U) are mapped homeomorphically by q to an open set V in
K containing x. Therefore, V is an evenly covered neighborhood of x,
and the assertion follows.

(b) Following the notation in 3(a) above, let H = q∗(π1(T, x̃)). Since
q : T → K is a covering space, it follows from Lesson Plan 4.4 (iii)(b)
that π1(K, x)/H → {x̃,−x̃} is a bijection. Moreover, as q∗ is injective,
it follows that H ∼= π1(T, (1, 1)) ∼= Z × Z. Thus, H is the required
index-two subgroup of the π1(K, x) that is isomorphic to Z× Z.

4. Let X be the quotient space obtained by identifying the circle x2+y2 =
1, z = 0 in the torus T (as in Problem 3 above) with the equator of
the unit sphere S2 centered at the origin (0, 0, 0). Use the Seifert-Van
Kampen theorem to compute the fundamental group of X.

Solution. Let A1 = B(0, r − 1/2) ∩ X and A2 = T ∪ ({(x, y, z) ∈
R3 : z ∈ (−1/2, 1/2)} ∩ S2). Following the notation in Problem 4,
we have X = A1 ∪ A2, where A1 ' S2, A2 ' T , and A1 ∩ A2 ' S1.
Let x = (1, 0, 0) and i∗ : π1(A1 ∩ A2, x) → π1(X, x) and j∗ : π1(A1 ∩
A2, x) → π1(X, x) induced by the inclusions i : (A1 ∩ A2, x) → (X, x)
and j : (A1 ∩ A2, x) → (X, x), respectively. Let β be the generator of
π1(A1, x) ∼= π1(S

1, x) represented by loop based at x in S1 (the equator
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of S2) that traverses once around S1 in the counterclockwise direction,
β′ be the generator of π1(A2, x) ∼= π1(T, x) represented by a loop based
at x in T that traverses once around the logitudinal curve of T (along
which T is identified with S2 by construction), and let α′ be the other
generator of π1(T, x) represented by the loop based at x in T that
traverses once around the meridional curve of T (perpendicular to the
longitudinal curve at x) in the counterclockwise direction.

By construction, it is apparent that i∗ is trivial, since S2 is simply-
connected, and j∗(β) = β′. By the Seifert-Van Kampen theorem, we
get

π1(X, x) = π1(A1, x) ∗ π1(A2, x)/N,

where N is normally generated by {i∗(α)j∗(α)−1 : α ∈ π1(A1∩A2, x) ∼=
π1(S

1, x)}. Hence, it follows that

π1(X, x) ∼= 〈α′, β′〉/〈(β′)−1 = (j∗(β))−1〉 ∼= 〈α′〉 ∼= Z.

5. (Bonus). Show that for n ≥ 2, Sn is not contractible.

Solution. For x0 ∈ Sn, suppose that cx ' idx0(viaF ). Then the map
r : Dn+1 → Sn defined by

r(x) =

{
x0, if ‖x‖ ≤ 1/2, and

F ( x
‖x‖ , 2‖x‖ − 1), if ‖x‖ ≥ 1/2,

defines a retraction of Dn+1 → Sn (Verify this!), which is a contra-
diction. (Note that this proof assumes the following nontrivial fact:
There exists no retraction from Dn+1 → Sn. The proof for n = 1 was
discussed in class as part of Lesson Plan 2.5 (iv).)
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